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There has been remarkable progress in the classification program of the complexity of 

counting problems. This program is carried out in at least three interrelated 
formulations: Graph Homomorphisms, Counting CSP, and Holant Problems which are 
inspired by Holographic Algorithms of Valiant. In each formulation, complexity 
dichotomy theorems have been achieved which classify {\it every} problem in a given 
class to be either solvable in polynomial time or \#P-hard.  
 
This talk will focus on Graph Homomorphism. It was defined by Lov\'{a}sz (1967) and 
has been studied intensively over the decades. It is also called the Partition Function:  
 
Given an $m \times m$ symmetric matrix $A$ over the complex field, compute the 

Partition Function $Z_A(\cdot)$, where for an arbitrary input graph $G$, \[ Z_A(G) =  

\sum_{\xi:V(G)\rightarrow [m]} \prod_{(u,v)\in E(G)} A_{\xi(u),\xi(v)}.\]  
 
In this general setting, it encompasses many counting problems such as counting vertex 
covers, independent sets, graph colorings etc. We prove a complexity dichotomy 
theorem in this most general setting, that the problem $Z_A(\cdot)$ is either computable 
in P or \#P-hard, with an explicit decision criterion on $A$.  
The complex field affords much possibility for cancelations (think of the permanent 
versus determinant.) Group theoretic properties and character sums play a major role. 

In the complex domain, there are also natural connections to Holographic Algorithms. 
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